Main Article Content
Abstract
Ethnomathematics is the study of the relationship between mathematics and culture and its application in everyday life. Batik, as one of Indonesia’s most iconic cultural heritages, contains patterns and structures rich in mathematical ideas, making it a relevant and engaging case study for mathematics education. Batik has the potential to contextualize abstract mathematical concepts through visual and cultural elements. This study specifically focuses on Batik Sidomukti, a classical batik from Surakarta, which is characterized by its distinctive curved patterns known as isen ukel. Isen ukel refers to ornamental curved or spiral lines used as filler patterns, which traditionally symbolize life, continuity, and aesthetic harmony in Javanese batik art. To explore the mathematical concepts embedded in Batik Sidomukti, this study employed a qualitative approach using ethnography and Ethnomathematics Guiding Questions. Ethnography is suitable for this context as it allows for an in-depth understanding of the cultural and artistic context of batik making, including the symbolic meanings and design structures. Data were collected through field observation, motif documentation, and literature review. This approach enabled the researcher to identify and analyze arithmetic and discrete mathematics elements present in the batik designs. For instance, modular and tiling arithmetic are reflected in the repetitive and structured arrangement of motifs, while discrete mathematics is represented through graph theory and combinatorics. The application of combinatorics, in particular, contributes to the aesthetic appeal and design variation of Batik Sidomukti. These findings highlight the significance of ethnomathematics in bridging cultural heritage and mathematics education. Batik motifs, especially Batik Sidomukti, are not only traditional artworks passed down through generations, but also a rich source of inspiration for developing culturally relevant mathematics instruction.
Keywords
Article Details
Copyright (c) 2025 Muhammad Noor Kholid, Herlang Duta Husodo

This work is licensed under a Creative Commons Attribution 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, Creative Commons Attribution-ShareAlike (CC BY-NC-SA).
References
- Acharya, B., Kshetree, M., Khanal, B., Panthi, R., & Belbase, S. (2021). Mathematics Educators’ Perspectives on Cultural Relevance of Basic Level Mathematics in Nepal. Journal on Mathematics Education, 12, 17–48. http://doi.org/10.22342/jme.12.1.12955.17-48
- Adams, C. (2023). The Tiling Book: An Introduction to the Mathematical Theory of Tilings. American Mathematical Society. https://books.google.co.id/books?id=E9zeEAAAQBAJ
- Afifah, D. S. N., Putri, I. M., & Listiawan, T. (2020). Eksplorasi Etnomatematika pada Batik Gajah Mada Motif Sekar Jagad Tulungagung. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 101–112. https://doi.org/10.30598/barekengvol14iss1pp101-112
- Aggarwal, M., & Murty, M. N. (2020). Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs. Springer Nature Singapore. https://books.google.co.id/books?id=fWgLEAAAQBAJ
- Aigner, M. (2023). Discrete Mathematics. American Mathematical Society. https://books.google.co.id/books?id=GKatEAAAQBAJ
- Akmal, Munir, R., & Santoso, J. (2021). Graph Extraction of Batik Image Using Region Adjacency Graph Representation. IOP Conference Series: Materials Science and Engineering, 1077(1). https://doi.org/10.1088/1757-899X/1077/1/012006
- Baker, M. (2022). The Western Mathematic and the Ontological Turn: Ethnomathematics and Cosmotechnics for the Pluriverse. In E. Vandendriessche & R. Pinxten (Eds.), Indigenous Knowledge and Ethnomathematics (pp. 243–276). Springer International Publishing. https://doi.org/10.1007/978-3-030-97482-4_9
- Banoth, R., & Regar, R. (2023). Mathematical Foundation for Classical and Modern Cryptography. In Classical and Modern Cryptography for Beginners (pp. 85–108). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-32959-3_3
- D’Ambrosio, U. (1985). Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. In For the Learning of Mathematics (pp. 44–48). FLM Publishing Association. https://www.jstor.org/stable/40248110
- D’Ambrosio, U. (2006). Ethnomathematics: Link Between Traditions and Modernity. Sense Publishers. https://books.google.co.id/books?id=Yf0MAQAAMAAJ
- Erciyes, K. (2021). Discrete Mathematics and Graph Theory (1st ed.). Springer Cham. https://doi.org/10.1007/978-3-030-61115-6
- Faiziyah, N., Khoirunnisa, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, Rustamaji, & Warsito. (2021). Ethnomathematics: Mathematics in Batik Solo. Journal of Physics: Conference Series, 1720(1). https://doi.org/10.1088/1742-6596/1720/1/012013
- Fakhriyah, E. N., Ishartono, N., Setyaningsih, R., Zulkarnaen, Ansyari, R. M., Halili, S. H. B., & Razak, R. B. A. (2025). Ethnomathematics: An Exploration of Geometric Concepts in Sidomukti Solo Batik. AIP Conference Proceedings, 3142(1). https://doi.org/10.1063/5.0262004
- Fauziah, N. M., Ishartono, N., Chamsudin, A., Junaedi, A., Razak, R. B. A., & Halili, S. H. B. (2025). Exploring of Geometry Concepts in Batik Kopi Pecah Salem. AIP Conference Proceedings, 3142(1). https://doi.org/10.1063/5.0262006
- Febriani, R., Knippenberg, L., & Aarts, N. (2023). The Making of a National Icon: Narratives of Batik in Indonesia. Cogent Arts & Humanities, 10(1). https://doi.org/10.1080/23311983.2023.2254042
- Fitri, N. L., & Prahmana, R. C. I. (2020). Designing Learning Trajectory of Circle Using the Context of Ferris Wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247–261. https://doi.org/10.23917/jramathedu.v5i3.10961
- Hafiza, G. N., Marzuki, I., & Soliana, W. M. Z. (2021). The Application of Batik Block Motifs and Marbling Technique as Pattern Designs in Contemporary Batik. AIP Conference Proceedings, 2347(1). https://doi.org/10.1063/5.0052330
- Hanik, U., Efendy, M., Jannah, A. N., & Fatmawati, I. (2024). Ethnomathematics: Exploration of Mathematical Concepts on the Process of Madurese Salt Production. Mathematics Education Journal, 18(1), 59–78. https://doi.org/10.22342/jpm.v18i1.pp59-78
- Ishartono, N., Razak, R. B. A., Kholid, M. N., Arlinwibowo, J., & Afiyah, A. N. (2024). Integrating Steam into Flip Flop Model to Improve Students’ Understanding on Composition of Functions During Online Learning. Infinity Journal, 13(1), 45–60. https://doi.org/10.22460/infinity.v13i1.p45-60
- Izza, R., Dafik, Kristiana, A. I., & Mursyidah, I. L. (2023). The Development of RBL-STEM Learning Materials to Improve Students’ Combinatorial Thinking Skills in Solving Local (a,d)-edge Antimagic Coloring Problems for Line Motif Batik Design. European Journal of Education and Pedagogy, 4(1), 145–153. https://doi.org/10.24018/ejedu.2023.4.1.571
References
Acharya, B., Kshetree, M., Khanal, B., Panthi, R., & Belbase, S. (2021). Mathematics Educators’ Perspectives on Cultural Relevance of Basic Level Mathematics in Nepal. Journal on Mathematics Education, 12, 17–48. http://doi.org/10.22342/jme.12.1.12955.17-48
Adams, C. (2023). The Tiling Book: An Introduction to the Mathematical Theory of Tilings. American Mathematical Society. https://books.google.co.id/books?id=E9zeEAAAQBAJ
Afifah, D. S. N., Putri, I. M., & Listiawan, T. (2020). Eksplorasi Etnomatematika pada Batik Gajah Mada Motif Sekar Jagad Tulungagung. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 101–112. https://doi.org/10.30598/barekengvol14iss1pp101-112
Aggarwal, M., & Murty, M. N. (2020). Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs. Springer Nature Singapore. https://books.google.co.id/books?id=fWgLEAAAQBAJ
Aigner, M. (2023). Discrete Mathematics. American Mathematical Society. https://books.google.co.id/books?id=GKatEAAAQBAJ
Akmal, Munir, R., & Santoso, J. (2021). Graph Extraction of Batik Image Using Region Adjacency Graph Representation. IOP Conference Series: Materials Science and Engineering, 1077(1). https://doi.org/10.1088/1757-899X/1077/1/012006
Baker, M. (2022). The Western Mathematic and the Ontological Turn: Ethnomathematics and Cosmotechnics for the Pluriverse. In E. Vandendriessche & R. Pinxten (Eds.), Indigenous Knowledge and Ethnomathematics (pp. 243–276). Springer International Publishing. https://doi.org/10.1007/978-3-030-97482-4_9
Banoth, R., & Regar, R. (2023). Mathematical Foundation for Classical and Modern Cryptography. In Classical and Modern Cryptography for Beginners (pp. 85–108). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-32959-3_3
D’Ambrosio, U. (1985). Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. In For the Learning of Mathematics (pp. 44–48). FLM Publishing Association. https://www.jstor.org/stable/40248110
D’Ambrosio, U. (2006). Ethnomathematics: Link Between Traditions and Modernity. Sense Publishers. https://books.google.co.id/books?id=Yf0MAQAAMAAJ
Erciyes, K. (2021). Discrete Mathematics and Graph Theory (1st ed.). Springer Cham. https://doi.org/10.1007/978-3-030-61115-6
Faiziyah, N., Khoirunnisa, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, Rustamaji, & Warsito. (2021). Ethnomathematics: Mathematics in Batik Solo. Journal of Physics: Conference Series, 1720(1). https://doi.org/10.1088/1742-6596/1720/1/012013
Fakhriyah, E. N., Ishartono, N., Setyaningsih, R., Zulkarnaen, Ansyari, R. M., Halili, S. H. B., & Razak, R. B. A. (2025). Ethnomathematics: An Exploration of Geometric Concepts in Sidomukti Solo Batik. AIP Conference Proceedings, 3142(1). https://doi.org/10.1063/5.0262004
Fauziah, N. M., Ishartono, N., Chamsudin, A., Junaedi, A., Razak, R. B. A., & Halili, S. H. B. (2025). Exploring of Geometry Concepts in Batik Kopi Pecah Salem. AIP Conference Proceedings, 3142(1). https://doi.org/10.1063/5.0262006
Febriani, R., Knippenberg, L., & Aarts, N. (2023). The Making of a National Icon: Narratives of Batik in Indonesia. Cogent Arts & Humanities, 10(1). https://doi.org/10.1080/23311983.2023.2254042
Fitri, N. L., & Prahmana, R. C. I. (2020). Designing Learning Trajectory of Circle Using the Context of Ferris Wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247–261. https://doi.org/10.23917/jramathedu.v5i3.10961
Hafiza, G. N., Marzuki, I., & Soliana, W. M. Z. (2021). The Application of Batik Block Motifs and Marbling Technique as Pattern Designs in Contemporary Batik. AIP Conference Proceedings, 2347(1). https://doi.org/10.1063/5.0052330
Hanik, U., Efendy, M., Jannah, A. N., & Fatmawati, I. (2024). Ethnomathematics: Exploration of Mathematical Concepts on the Process of Madurese Salt Production. Mathematics Education Journal, 18(1), 59–78. https://doi.org/10.22342/jpm.v18i1.pp59-78
Ishartono, N., Razak, R. B. A., Kholid, M. N., Arlinwibowo, J., & Afiyah, A. N. (2024). Integrating Steam into Flip Flop Model to Improve Students’ Understanding on Composition of Functions During Online Learning. Infinity Journal, 13(1), 45–60. https://doi.org/10.22460/infinity.v13i1.p45-60
Izza, R., Dafik, Kristiana, A. I., & Mursyidah, I. L. (2023). The Development of RBL-STEM Learning Materials to Improve Students’ Combinatorial Thinking Skills in Solving Local (a,d)-edge Antimagic Coloring Problems for Line Motif Batik Design. European Journal of Education and Pedagogy, 4(1), 145–153. https://doi.org/10.24018/ejedu.2023.4.1.571