Main Article Content

Abstract

Sam Poo Kong is one of Semarang's city cultural heritages. This historical structure features intriguing architecture as well as being a popular tourist destination. This study aims to explore Sam Poo Kong's building as a starting point in the geometric transformation course. Besides, the study method is descriptive in qualitative terms with the ethnography approach, namely the type of research to describe and acquire data as a whole, comprehensive, and in-depth. The result is an ethnomathematics exploration of Sam Poo Kong's historic buildings, representing mathematical concepts including reflection, translation, rotation, dilation, and cultural values. Based on implementation in transformation class, students can quickly grasp which Sam Poo Kong's building portrays transformation. Students can identify and describe the Sam Poo Kong building's transformation forms, which include: 1) reflection on the temple as a whole, ornaments, and Sam Poo Kong entrance gates; 2) translation on the statues, roofs, lanterns, and poles; 3) rotation on the bedug, reliefs, incense holders, lanterns, and anchors; and 4) dilatation of the inner and outer rooflines of the Sam Poo Kong building. This can stimulate students to envisage the types of transformation, which makes the information easier to learn.Moreover, this study can benefit teachers for local wisdom context reference in geometric transformation and following researchers for further study.

DOI : https://doi.org/10.22342/jpm.16.1.13073.15-28

Keywords

Ethnography Ethnomathematics Sam Poo Kong Transformation

Article Details

How to Cite
Aisyah, F., Lestari, A. A. P., Supriyanto, M. A., & Nursyahidah, F. (2024). Exploration of Sam Poo Kong Building Heritage as Starting Point in Geometric Transformation Course. Jurnal Pendidikan Matematika, 16(1), 15–28. Retrieved from https://jpm.ejournal.unsri.ac.id/index.php/jpm/article/view/158

References

  1. Abdullah, A. (2016). Ethnomathematics in Perspective Sundanese Culture. Journal On Mathematics Education, 8(1), 1-16. https://doi.org/10.22342/jme.8.1.3877.1-15
  2. Adhigwhinyo, P. K. D., & Handoko, B. (2017). Kajian Arsitektural dan Filosofis Budaya Tionghoa pada Klenteng Jin De Yuan, Jakarta. Jurnal Tingkat Sarjana Bidang Seni Rupa dan Desain.
  3. Aktaş, G. S., & Ünlü, M. (2017). Understanding of Eight Grade Students about Transformation Geometry: Perspectives on Students' Mistakes. Journal of Education and Training Studies, 5(5), 103-119. https://doi.org/10.11114/jets.v5i5.2254
  4. Arbowo, B., Lestari, A., Aisyah, F., & Nursyahidah, F. (2018). Developing Students Activity with Wisanggeni Puppet Context to Enhance Students' Understanding of Addition and Subtraction Thousands Number. Proceedings of the Mathematics, Informatics, Science, And Education International Conference (MISEIC 2018), 157, 266-269. Surabaya: Universitas Negeri Surabaya.https://doi.org/10.2991/miseic-18.2018.64
  5. Ardiyani, S., Gunarhadi, G., & Riyadi, R. (2018). Realistic Mathematics Education in Cooperative Learning Viewed from Learning Activity. Journal on Mathematics Education, 9(2), 301-310. https://doi.org/10.22342/jme.9.2.5392.301-310
  6. Burais, Listika, dkk. (2016). Peningkatan Kemampuan Penalaran Matematis Siswa melalui Model Discovery Learning. Jurnal Didaktik Matematika, 3(1).http://jurnal.unsyiah.ac.id/DM/article/view/4639
  7. Bustang, Zulkardi, Darmowijoyo, dolk, M.,& Van Eerde, D. (2013). Developing a Local Instruction Theory for Learning the Concept of Angle through Visual Field Activities and Spatial Representations. International Education Studies, 6(8), 58-70.https://doi.org/10.5539/ies.v6n8p58
  8. CNN Indonesia. (2018, Oktober 30). Sam Poo Kong Saksi Bisu Penjelaajahan Cheng Ho di Indonesia [Video]. Youtube. https://www.youtube.com/watch?v=WpGoPltigjY
  9. Duckworth, E. (2013). Helping students get to where ideas can find them. Journal of the New Educator,5(3), 1-10.https://doi.org/10.1080/1547688X.2009.10399573
  10. Evidiasari, S.,Subanji,&Irawati, S. 2019. Students' Spatial Reasoning in Solving Geometrical Transformation Problems.Indonesian Journal on Learning and Advanced Education (IJOLAE), 1(2), 38-51. https://doi.org/10.23917/ijolae.v1i2.8703
  11. Fahrurozi et al. (2018). Developing Learning Trajectory Based Instruction of the Congruence for Ninth Grade Using Central Java Historical Building. Journal of Research and Advances in Mathematics Education, 3(2), 78-85.https://doi.org/10.23917/jramathedu.v3i2.6616
  12. Fife, J. H., James, K., & Bauer, M. (2019). A learning progression for geometric transformations. Princeton, NJ: Educational Testing Service.https://doi.org/10.1002/ets2.12236
  13. Gay, L. R., Mills, G. E.,& Airasian, P. W.(1996).Educational Research: Competencies for Analysis and Applications.New Jersey: Pearson Education.
  14. Guven, B. (2012). Using Dynamic Geometry Software to Improve Eight Grade Students' Understanding of Transformation Geometry. Australian Journal of Educational Technology,28(2), 1-14.https://doi.org/10.14742/ajet.878
  15. Hasibuan et al. (2018). Development of Learning Materials Based on Realistic Mathematics Education to Improve Problem Solving Ability and Student Learning Independence. International Electronic Journal of Mathematics Education,14(1), 243-252.https://doi.org/10.29333/iejme/4000
  16. Hermawan, B. & Prihatmaji, Y. P. (2019). Perkembangan Bentukan Atap Rumah Tradisional Jawa.
  17. Prosiding Seminar Nasional Desain dan Arsitektur (SENADA).
  18. Julianto, E. N. (2015). Spirit Pluralisme dalam Klenteng Sam Poo Kong Semarang. The Messenger, 7(2), 36-41.http://dx.doi.org/10.26623/themessenger.v7i2.302
  19. Khaliesh, H. (2014). Arsitektur Tradisional Tionghoa: Tinjauan Terhadap Identitas, Karakter Budaya dan Eksistensinya. Langkau Betang, 1(1), 86-99.
  20. Kusmaryono, I. (2014). The Importance of Mathematical Power in Mathematics Learning. Proceedings of International Conference on Mathematics, Science, and Education 2014 (ICMSE 2014). UNNES: 35–40.https://icmseunnes.com/2015/wp-content/uploads/2015/10/7.pdf
  21. Marcella, B. S. (2014). Bentuk dan Makna Atap Kelenteng Sam Poo Kong Semarang. Jurnal Arsitektur KOMPOSISI, 10(5), 350-359. https://doi.org/10.24002/jars.v10i5.1094
  22. Morris, T. & Paulsen, R.(2011). Using Tracing Paper to Teach Transformation Geometry. Amesa Vol. 2. Johannesburg: Amesa.
  23. Naidoo, J. (2010). Strategies Used by Grade 12 Mathematics Learners in Transformation Geometry. Natal: University of Kwazulu.
  24. Nejad, J. M., Zarghami, E., & Abad, A. S. H. (2016). A Study on the Concepts and Themes of Color and Light in the Exquisite Islamic Architecture. Journal of Fundamental and Applied Sciences, 8(3), 1077-1096. http://dx.doi.org/10.4314/jfas.v8i3.23
  25. Nuraida, E. M. & Putri, R. I. (2020). The Context of Archipelago Traditional Cake to Explore Students' Understanding in Integers Division Class VII. Jurnal Pendidikan Matematika, 14(1).https://doi.org/10.22342/jpm.14.1.7400.91-10
  26. Nursyahidah, F., Ilma, R., & Somakim. (2013). Supporting First Grade Student's Understanding of Addition up to 20 Using Traditional Game. Journal on Mathematics Education,4(2), 212–223. https://doi.org/10.22342/jme.4.2.557.212-223
  27. Nursyahidah, F., Saputro, B. A., Albab, I. U., & Aisyah, F. (2020). Pengembangan Learning Trajectory Based Instruction Materi Kerucut Menggunakan Konteks Megono Gunungan. Mosharafa, JurnalPendidikanMatematika,9(1), 47-58.https://doi.org/10.31980/mosharafa.v9i1.560
  28. Nursyahidah, F., Saputro, B. A., & Rubowo, M. R. (2018). A Secondary Student's Problem Solving Ability in Learning Based on Realistic Mathematics with Ethnomathematics. Journal of Research and Advances in Mathematics Education, 3(1), 13-24. https://doi.org/10.23917/jramathedu.v3i1.5607
  29. Nursyahidah, F., Saputro, B.A., & Albab, I.U., (2021a). Desain Pembelajaran Kerucut Berkonteks Tradisi Megono Gunungan. Jurnal Elemen,7(1), 14-27. https://doi.org/10.29408/jel.v7i1.2655
  30. Nursyahidah, F., Saputro, B.A., & Albab, I.U., (2021b). Learning cylinder through the context of Giant Lopis tradition. Journal of Physics: Conference Series,1918. https://doi.org/10.1088/1742-6596/1918/4/042086
  31. Prahmana, R. C. I. (2010). Permainan “Tepuk Bergilir” yang berorientasikonstruktivisme dalam pembelajaran. Jurnal Pendidikan Matematika, 4(2),1-15. http://dx.doi.org/10.22342/jpm.4.2.406.
  32. Puspasari, L., Zulkardi, & Somakim. 2015. Desain Pembelajaran Luas Segi Banyak Menggunakan Tangram Berpetak di Kelas IV. Jurnal Inovasi Pembelajaran,1(2).https://doi.org/10.22219/jinop.v1i2.2566
  33. Ramlan, A. M., & Hali, F. 2018. Analysis of the Difficulty of Mathematical Education Students in Completing the Geometric Running Problem Based on Van Hiele Theory in Geometry Transformation. Journal of Mathematics Education,3(2), 65-70. https://doi.org/10.31327/jomedu.v3i2.834
  34. Risdiyanti, I., & Prahmana, R.C.I. (2020). The learning trajectory of number pattern learning using Barathayudha war stories and Uno Stacko. Journal on Mathematics Education,11(1), 157- 166.https://doi.org/10.22342/jme.11.1.10225.157-166
  35. Wahidin dan Sugiman. (2014). Pengaruh Pendekatan PMRI terhadap Motivasi Berprestasi, Kemampuan Pemecahan Masalah, dan Prestasi Belajar. Jurnal Pendidikan Matematika,9(1).https://doi.org/10.21831/pg.v9i1.9072
  36. Yanik, H. B. 2014. Middle-school students' concept images of geometric translations.TheJournal of Mathematical Behavior, 36, 33–50. https://doi.org/10.1016/j.jmathb.2014.08.001
  37. Yeh et al. 2019.Enhancing achievement and interest in mathematics learning through Math- Island. Research and Practice in Technology Enhanced Learning, 14(1).https://doi.org/10.1186/s41039-019-0100-9
  38. Yeni, E.M. (2011). Pemanfaatan Benda-Benda Mnipulatif untuk Meningkatkan Pemahaman Konsep Geometri dan Kemampuan Tilikan Ruang Siswa kelas V Sekolah Dasar. Proceedings Simantap 2011. Medan: Indonesian Mathematical Society.
  39. Zhang, D. (2019). Cultural Symbols in Chinese Architecture. Architecture and Design Review, 1(1). https://doi.org/10.18282/adr.v1i1.556
  40. Zulkardi & Putri, R. I. (2006). Mendesain Sendiri Soal Kontekstual Matematika. Prosiding dalam Konferensi NasionalMatematika ke 13. Semarang: Universitas Negeri Semarang.

Similar Articles

You may also start an advanced similarity search for this article.