Main Article Content

Abstract

Ethnomathematics is the study of the relationship between mathematics and culture and its application in everyday life. Batik, as one of Indonesia’s most iconic cultural heritages, contains patterns and structures rich in mathematical ideas, making it a relevant and engaging case study for mathematics education. Batik has the potential to contextualize abstract mathematical concepts through visual and cultural elements. This study specifically focuses on Batik Sidomukti, a classical batik from Surakarta, which is characterized by its distinctive curved patterns known as isen ukel. Isen ukel refers to ornamental curved or spiral lines used as filler patterns, which traditionally symbolize life, continuity, and aesthetic harmony in Javanese batik art. To explore the mathematical concepts embedded in Batik Sidomukti, this study employed a qualitative approach using ethnography and Ethnomathematics Guiding Questions. Ethnography is suitable for this context as it allows for an in-depth understanding of the cultural and artistic context of batik making, including the symbolic meanings and design structures. Data were collected through field observation, motif documentation, and literature review. This approach enabled the researcher to identify and analyze arithmetic and discrete mathematics elements present in the batik designs. For instance, modular and tiling arithmetic are reflected in the repetitive and structured arrangement of motifs, while discrete mathematics is represented through graph theory and combinatorics. The application of combinatorics, in particular, contributes to the aesthetic appeal and design variation of Batik Sidomukti. These findings highlight the significance of ethnomathematics in bridging cultural heritage and mathematics education. Batik motifs, especially Batik Sidomukti, are not only traditional artworks passed down through generations, but also a rich source of inspiration for developing culturally relevant mathematics instruction.

Keywords

Arithmetic Batik Sidomukti Discrete Mathematical Ethnomathematics

Article Details

How to Cite
Kholid, M. N., & Husodo, H. D. (2025). Ethnomathematics: Arithmetic and Discrete Mathematics Concepts in Batik Sidomukti Solo. Mathematics Education Journal, 19(3), 489–508. https://doi.org/10.22342/mej.v19i3.pp489-508

References

  1. Acharya, B., Kshetree, M., Khanal, B., Panthi, R., & Belbase, S. (2021). Mathematics Educators’ Perspectives on Cultural Relevance of Basic Level Mathematics in Nepal. Journal on Mathematics Education, 12, 17–48. http://doi.org/10.22342/jme.12.1.12955.17-48
  2. Adams, C. (2023). The Tiling Book: An Introduction to the Mathematical Theory of Tilings. American Mathematical Society. https://books.google.co.id/books?id=E9zeEAAAQBAJ
  3. Afifah, D. S. N., Putri, I. M., & Listiawan, T. (2020). Eksplorasi Etnomatematika pada Batik Gajah Mada Motif Sekar Jagad Tulungagung. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 14(1), 101–112. https://doi.org/10.30598/barekengvol14iss1pp101-112
  4. Aggarwal, M., & Murty, M. N. (2020). Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs. Springer Nature Singapore. https://books.google.co.id/books?id=fWgLEAAAQBAJ
  5. Aigner, M. (2023). Discrete Mathematics. American Mathematical Society. https://books.google.co.id/books?id=GKatEAAAQBAJ
  6. Akmal, Munir, R., & Santoso, J. (2021). Graph Extraction of Batik Image Using Region Adjacency Graph Representation. IOP Conference Series: Materials Science and Engineering, 1077(1). https://doi.org/10.1088/1757-899X/1077/1/012006
  7. Baker, M. (2022). The Western Mathematic and the Ontological Turn: Ethnomathematics and Cosmotechnics for the Pluriverse. In E. Vandendriessche & R. Pinxten (Eds.), Indigenous Knowledge and Ethnomathematics (pp. 243–276). Springer International Publishing. https://doi.org/10.1007/978-3-030-97482-4_9
  8. Banoth, R., & Regar, R. (2023). Mathematical Foundation for Classical and Modern Cryptography. In Classical and Modern Cryptography for Beginners (pp. 85–108). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-32959-3_3
  9. D’Ambrosio, U. (1985). Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. In For the Learning of Mathematics (pp. 44–48). FLM Publishing Association. https://www.jstor.org/stable/40248110
  10. D’Ambrosio, U. (2006). Ethnomathematics: Link Between Traditions and Modernity. Sense Publishers. https://books.google.co.id/books?id=Yf0MAQAAMAAJ
  11. Erciyes, K. (2021). Discrete Mathematics and Graph Theory (1st ed.). Springer Cham. https://doi.org/10.1007/978-3-030-61115-6
  12. Faiziyah, N., Khoirunnisa, M., Azizah, N. N., Nurrois, M., Prayitno, H. J., Desvian, Rustamaji, & Warsito. (2021). Ethnomathematics: Mathematics in Batik Solo. Journal of Physics: Conference Series, 1720(1). https://doi.org/10.1088/1742-6596/1720/1/012013
  13. Fakhriyah, E. N., Ishartono, N., Setyaningsih, R., Zulkarnaen, Ansyari, R. M., Halili, S. H. B., & Razak, R. B. A. (2025). Ethnomathematics: An Exploration of Geometric Concepts in Sidomukti Solo Batik. AIP Conference Proceedings, 3142(1). https://doi.org/10.1063/5.0262004
  14. Fauziah, N. M., Ishartono, N., Chamsudin, A., Junaedi, A., Razak, R. B. A., & Halili, S. H. B. (2025). Exploring of Geometry Concepts in Batik Kopi Pecah Salem. AIP Conference Proceedings, 3142(1). https://doi.org/10.1063/5.0262006
  15. Febriani, R., Knippenberg, L., & Aarts, N. (2023). The Making of a National Icon: Narratives of Batik in Indonesia. Cogent Arts & Humanities, 10(1). https://doi.org/10.1080/23311983.2023.2254042
  16. Fitri, N. L., & Prahmana, R. C. I. (2020). Designing Learning Trajectory of Circle Using the Context of Ferris Wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247–261. https://doi.org/10.23917/jramathedu.v5i3.10961
  17. Hafiza, G. N., Marzuki, I., & Soliana, W. M. Z. (2021). The Application of Batik Block Motifs and Marbling Technique as Pattern Designs in Contemporary Batik. AIP Conference Proceedings, 2347(1). https://doi.org/10.1063/5.0052330
  18. Hanik, U., Efendy, M., Jannah, A. N., & Fatmawati, I. (2024). Ethnomathematics: Exploration of Mathematical Concepts on the Process of Madurese Salt Production. Mathematics Education Journal, 18(1), 59–78. https://doi.org/10.22342/jpm.v18i1.pp59-78
  19. Ishartono, N., Razak, R. B. A., Kholid, M. N., Arlinwibowo, J., & Afiyah, A. N. (2024). Integrating Steam into Flip Flop Model to Improve Students’ Understanding on Composition of Functions During Online Learning. Infinity Journal, 13(1), 45–60. https://doi.org/10.22460/infinity.v13i1.p45-60
  20. Izza, R., Dafik, Kristiana, A. I., & Mursyidah, I. L. (2023). The Development of RBL-STEM Learning Materials to Improve Students’ Combinatorial Thinking Skills in Solving Local (a,d)-edge Antimagic Coloring Problems for Line Motif Batik Design. European Journal of Education and Pedagogy, 4(1), 145–153. https://doi.org/10.24018/ejedu.2023.4.1.571

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.