Main Article Content

Abstract

Fraction division is considered one of the most difficult concepts in learning fractions. This study aims to investigate students’ understanding of fraction division through a partition division conceptualization, utilizing their understanding of fractions as parts of a whole. To achieve this, we designed a hypothetical learning trajectory, in which students engaged with incomplete partition task. This article reports on a two-week design research intervention involving 21 fifth-grade students. The students’ written works, transcripts of teaching experiment recordings, and observational notes were retrospectively analyzed to examine the hypothetical learning trajectory. The study revealed that the students’ primary challenge was recognizing the correct whole during the teaching experiment. This study suggests that incorporating a stronger focus on proportional reasoning and varying fraction sizes in instructional approaches may help address this obstacle.

Keywords

Part-whole Fraction Division Fair-sharing Hypothetical Learning Trajectory Partition Division

Article Details

How to Cite
Adelia, V., Putri, R. I. I., & Zulkardi. (2025). From Parts to Wholes: Investigating Fraction Division through Partitioning Strategies. Mathematics Education Journal, 19(2), 241–254. Retrieved from https://jpm.ejournal.unsri.ac.id/index.php/jpm/article/view/131

References

  1. Adu-Gyamfi, K., Schwartz, C. S., Sinicrope, R., & Bossé, M. J. (2019). Making sense of fraction division: domain and representation knowledge of preservice elementary teachers on a fraction division task. Mathematics Education Research Journal, 31, 507-528. https://doi.org/10.1007/s13394-019-00265-2
  2. Bakker, A. (2018). What is design research in education? In Design research in education: A practical guide for early career researchers (pp. 3-22). Routledge. https://doi.org/10.4324/9780203701010
  3. Bakker, A., & Smit, J. (2018). Using hypothetical learning trajectories in design research. In Design research in education: A practical guide for early career researchers (pp. 255-271). Routledge. https://doi.org/10.4324/9780203701010
  4. Bulgar, S. (2003). Children’s sense-making of division of fractions. The Journal of Mathematical Behavior, 22(3), 319-334. https://doi.org/10.1016/S0732-3123(03)00024-5
  5. Čadež, T. H, & Kolar, V. M. (2018). How fifth-grade pupils reason about fractions: a reliance on part-whole subconstructs. Educational Studies in Mathematics, 99, 335-357. https://doi.org/10.1007/s10649-018-9838-z
  6. Cramer, K., Monson, D., Whitney, S., Leavitt, S., & Wyberg, T. (2010). Dividing fractions and problem solving. Mathematics Teaching in the Middle School, 15(6), 338-346. https://doi.org/10.5951/MTMS.15.6.0338
  7. Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. V. D. Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 29-63). Routledge. https://doi.org/10.4324/9780203088364
  8. Ivars, P., Fernández, C. & Llinares, S. (2020). A learning trajectory as a scaffold for pre-service teachers’ noticing of students’ mathematical understanding. International Journal of Science and Mathematics Education, 18, 529–548. https://doi.org/10.1007/s10763-019-09973-4
  9. Laidin, D. R., & Tengah, K. A. (2021). Applying butterflu method in the learning of addition and subtraction of fractions. Jurnal Pendidikan Matematika, 15(2), 161-174. https://doi.org/10.22342/jpm.15.2.13934.161-174
  10. Lamon, S. J. (2020). Teaching Fractions and Ratios for Understanding (4th Edition). Routledge: New York. https://doi.org/10.4324/9781003008057
  11. Li, Y. (2008). What do students need to learn about division of fractions?. Mathematics teaching in the middle school, 13(9), 546-552. https://doi.org/10.5951/MTMS.13.9.0546
  12. Lo, J. J., & Luo, F. (2012). Prospective elementary teachers’ knowledge of fraction division. Journal of Mathematics Teacher Education, 15, 481-500. https://doi.org/10.1007/s10857-012-9221-4
  13. Low, J., Shahrill, M., & Zakir, N. (2020). Solving fractions by applying the bar model concept with the butterfly method. Jurnal Pendidikan Matematika, 14(2), 101-116. https://doi.org/10.22342/jpm.14.2.11261.101-116
  14. Nieveen, N. M., McKenney, S., & van den Akker, J. (2006). Educational design research: The value of variety. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research: The value of variety (pp. 151-158). Routledge. https://research.utwente.nl/en/publications/educational-design-research-the-value-of-variety
  15. Ott, J. M., Snook, D. L., & Gibson, D. L. (1991). Understanding partitive division of fractions. The Arithmetic Teacher, 39(2), 7-11. https://doi.org/10.5951/AT.39.2.0007
  16. Pramudiani, P., Herman, T., Dolk, M., & Doorman, M. (2022). How does a missing part become important for primary school students in understanding fractions?. Journal on Mathematics Education, 13(4), 565-586. https://doi.org/10.22342/jme.v13i4.pp565-586
  17. Prediger, S., Quabeck, K., & Erath, K. (2022). Conceptualizing micro-adaptive teaching practices in content-specific ways: Case study on fractions. Journal on Mathematics Education, 13(1), 1-30. https://doi.org/10.22342/jme.v13i1.pp1-30
  18. Purnomo, Y. W., Arlini, R., Nuriadin, I., & Aziz, T. A. (2021). Learning trajectory based on fractional sub-constructs: Using fractions as quotients to introduce fractions. Mathematics Teaching Research Journal, 13(3), 183-207. https://files.eric.ed.gov/fulltext/EJ1382607.pdf
  19. Putri, R. I. I., Setyorini, N. P., Meitrilova, A., Permatasari, R., Saskiyah, S. A., & Nusantara, D. S. (2021). Designing a healthy menu project for indonesian junior high school students. Journal on Mathematics Education, 12(1), 133-146. https://doi.org/10.22342/jme.11.1.9786.135-144
  20. Roche, A., & Clarke, D. M. (2013). Primary teachers’ representations of division: Assessing mathematical knowledge that has pedagogical potential. Mathematics Education Research Journal, 25, 257-278. http://dx.doi.org/10.1007/s13394-012-0060-5
  21. Rule, A. C., & Hallagan, J. E. (Eds.). (2006). Preservice elementary teachers use drawings and make sets of materials to explain multiplication and division of fractions. Proceedings from PMET ‟06: The 2nd Annual Preparing Mathematicians to Educate Teachers Conference. Oswego, NY. https://files.eric.ed.gov/fulltext/ED494956.pdf
  22. Sari, I. P., Suryadi, D., Herman, T., Dahlan, J. A., & Supriyadi, E. (2024). Learning obstacles on fractions: A scoping review. Infinity Journal, 13(2), 377-392. https://doi.org/10.22460/infinity.v13i2.p377-392
  23. Setambah, M. A. B., Jaafar, A. N., Saad, M. I. M., & Yaakob, M. F. M. (2021). Fraction chiper: A way to enhance student ability in addition and subtraction fraction. Infinity Journal, 10(1), 81-92. https://doi.org/10.22460/infinity.v10i1.p81-92
  24. Sharp, J., & Adams, B. (2002). Children's constructions of knowledge for fraction division after solving realistic problems. The Journal of Educational Research, 95(6), 333-347. http://dx.doi.org/10.1080/00220670209596608
  25. Shin, M., & Bryant, D. P. (2015). Fraction interventions for students struggling to learn mathematics: A research synthesis. Remedial and Special Education, 36(6), 374-387. https://doi.org/10.1177/0741932515572910
  26. Shin, J., & Lee, S. J. (2018). The alignment of student fraction learning with textbooks in Korea and the United States. The Journal of Mathematical Behavior, 51, 129-149. https://doi.org/10.1016/j.jmathb.2017.11.005
  27. Sidney, P. G., Thompson, C. A., & Rivera, F. D. (2019). Number lines, but not area models, support children’s accuracy and conceptual models of fraction division. Contemporary Educational Psychology, 58, 288-298. https://doi.org/10.1016/j.cedpsych.2019.03.011
  28. Sinicrope, R., Mick, H. W., & Kolb, J. R. (2002). Fraction division interpretat. In B. Litwiller & G. Bright (Eds.), Making sense of fractions, ratios, and proportions, NCTM 2002 yearbook (pp. 153–161). Reston, VA: National Council of Teachers of Mathematics. https://eric.ed.gov/?id=ED474863
  29. Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Sciences, 17(1), 13–19. https://doi.org/10.1016/j.tics.2012.11.004
  30. Son, J. W., & Senk, S. L. (2010). How reform curricula in the USA and Korea present multiplication and division of fractions. Educational Studies in Mathematics, 74, 117-142. https://doi.org/10.1007/s10649-010-9229-6
  31. Streefland, L. (1991). Fractions in Realistic Mathematics Education: A Paradigm of Developmental Research (Vol. 8). The Netherlands: Springer Science & Business Media. https://doi.org/10.1007/978-94-011-3168-1
  32. Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2008). Elementary and Middle School Mathematics: Teaching Developmentally. Boston, MA: Allyn and Bacon. https://books.google.co.id/books/about/Elementary_and_Middle_School_Mathematics.html?id=nisCzwEACAAJ&redir_esc=y
  33. Wahyu, K., Kuzu, T. E., Subarinah, S., Ratnasari, D., & Mahfudy, S. (2020). Partitive fraction division: Revealing and promoting primary students' understanding. Journal on Mathematics Education, 11(2), 237-258. https://doi.org/10.22342/jme.11.2.11062.237-258
  34. Wilkins, J. L. M., & Norton, A. (2018). Learning progression toward a measurement concept of fractions. International Journal of STEM Education, 5(1), 1-11. https://doi.org/10.1186/s40594-018-0119-2
  35. Yeo, S. (2019). Investigating children's informal knowledge and strategies: The case of fraction division. Research in Mathematical Education, 22(4), 283-304. http://doi.org/10.7468/jksmed.2019.22.4.283
  36. Zaleta, C. K. (2006). Invented strategies for division of fractions. In Alatorre, S., Cortina, J.L., Saiz, M., and Mendez, A (Eds.). Proceeding of the 28th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Merida, Mexico: Universidad Pedagogica Nacional. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=77136e0514893005b78c081f0df074677a40f3a6#page=509

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.