Main Article Content

Abstract

One of basic skill that must be had by students before they solved a mathematics problem is conceptual understanding skills. This research aimed to describe the skill of students conceptual understanding in identification any problem at indefinite integral and definite integral. Problem identification was the first step they should did before they did next step to solve the problem. Research method used in this study was a descriptive qualitative research and  about  30  students of 4th   semester  who  took  calculus  integral course participating as the subjects. Test and interview were used as data collection techniques in this study. For next step data was reducted, presentated, and concluded using triangulation techniques. Based the result of this study known about 63,3% of students could be had to identification the answer of any integral calculus problem   and they had good enough conceptual understanding skill. To  identification the answer of any integral calculus problem students had been red and understood the basic concept of it and then they had been did a lot of practice of finishing various problem of it.

Keywords

Conceptual Understanding Skill Problem Identification Indefinite Integral Definite Integral

Article Details

How to Cite
Utari, R. S., & Utami, A. (2020). Kemampuan Pemahaman Konsep Mahasiswa dalam Mengidentifikasi Penyelesaian Soal Integral Tak Tentu dan Tentu. Jurnal Pendidikan Matematika, 14(1), 39–50. Retrieved from https://jpm.ejournal.unsri.ac.id/index.php/jpm/article/view/195

References

  1. Ario, M., & Asra, A. (2018). Pengaruh pembelajaran flipped classroom terhadap hasil belajar kalkulus integral mahasiswa pendidikan matematika. Anargya: Jurnal Ilmiah Pendidikan Matematika, 1(2), 82-88. https://doi.org/10.24176/anargya.v1i2.2477.
  2. Arcana, I.N. (2011). Pengembangan media pembelajaran mandiri berbantuan komputer untuk meningkatkan pemahaman konsep kalkulus II. Jurnal Wima Magister Scientiae, 30(1), 53-65. https://doi.org/10.33508/mgs.v0i30.632.
  3. Depdiknas. (2006). Standar Kompetensi dan Kompetensi Dasar Matematika SMA/MA. Jakarta: Depdiknas.
  4. Furner, J.M., & Kumar, D.D. (2007) . The mathematics and science integration argument : A stand for teacher education. Eurasia Journal of Mathematics, Science & Technology Education, 3(3), 185-189. https://doi.org/10.12973/ejmste/75397.
  5. Ghozi, S., & Hilmansyah. (2018). Visualisasi geometris aplikasi integral: Studi penggunaan autograph dalam pembelajaran matematika teknik. Jurnal Nasional Pendidikan Matematika, 2(1), 73-85.http://dx.doi.org/10.33603/jnpm.v2i1.896.
  6. Hartono, W., & Noto, M.S. (2017). Pengembangan modul berbasis penemuan terbimbing untuk meningkatkan kemampuan matematis pada perkuliahan kalkulus integral. Jurnal Nasional Pendidikan Matematika, 1(2), 320-333. http://dx.doi.org/10.33603/jnpm.v1i2.616.
  7. Haryono, N.A. (2009). Perhitungan integral lipat menggunakan metode monte carlo. Jurnal Informatika, 5(2), 70-77. http://dx.doi.org/10.21460/inf.2009.52.76.
  8. Karim, A. (2011). Penerapan metode penemuan terbimbing dalam pembelajaran matematika untuk meningkatkan pemahaman konsep dan kemampuan berpikir kritis siswa sekolah dasar. Jurnal Pendidikan, 1(1), 21-32.
  9. Kesumawati, N. (2008). Pemahaman Konsep Matematik dalam Pembelajaran Matematika. Prosiding Seminar Nasional Matematika dan Pendidikan Matematik. (pp. 229-235). Yogyakarta: Universitas Negeri Yogyakarta.
  10. Rahimah, D. (2012). Identifikasi kesalahan mahasiswa dalam menyelesaikan soal-soal pokok bahasan integral pada mata kuliah kalkulus integral. Exacta: Jurnal Pendidikan Matematika dan Sains, 10(1), 89-97.
  11. Raslan, K.R. (2008). The First Integral Method For Solving Some Important Nonlinear Partial Differential Equations. Nonlinear Dynamics, 53(4), 281-286. https://doi.org/10.1007/s11071-007-9262-x.
  12. Salmina, M. (2017). Analisis Kekeliruan dalam Menyelesaikan Soal Kalkulus Pada Mahasiswa Pendidikan Matematika. Numeracy, 4(2), 62-70.
  13. Saparwadi, L. (2015). Peningkatan pembelajaran kalkulus integral melalui kegiatan lesson study di program studi pendidikan matematika. Jurnal Pendidikan Matematika 9(1), 35-47. https://doi.org/10.22342/jpm.9.1.2420.35-47.
  14. Sari, D.A., Hakiim, A., & Efelina, V. (2018). Kajian Ulang Pemahaman Konsep Integral-Turunan Pasca Ujian Akhir Semester. E-DIMAS: Education-Pengabdian Kepada Masyarakat, 10(1), 1-5. http://dx.doi.org/10.26877/e-dimas.v10i1.2050.
  15. Serhan, D. (2015). Student' understanding of the definite integral concept. International Journal of Research in Education and Science, 1(1), 84-88.
  16. Sugiyono. (2015). Metode Penelitian Pendidikan: Pendekatan Kuantitatif, Kualitatif dan R & D. Bandung: Alfabeta.
  17. Tarasov, V.E. (2015). On chain rule for fractional derivatives. Communication in Nonlinear Science and Numerical Simulation, 30(1-3), 1-4. https://doi.org/10.1016/j.cnsns.2015.06.007.
  18. Varberg, D., Purcel, E.J., & Rigdon, S.E. (2010). Kalkulus Jilid 1 Edisi 9. Jakarta: Erlangga. Varberg, D., Purcel, E.J., & Rigdon, S.E. (2011). Kalkulus jilid 2 edisi 9. Jakarta: Erlangga.
  19. Zetriuslita, Ariawan, R., & Nufus, H. (2016). Analisis kemampuan berpikir matematis mahasiswa dalam menyelesaikan soal uraian kalkulus integral berdasarkan level kemampuan mahasiswa. Jurnal Infinity, 5(1), 56-65. https://doi.org/10.22460/infinity.v5i1.p56-66.