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Abstract 

In this paper, we report our study on identifying mathematics pre-service teachers’ understanding (and 

misconceptions) of concepts in inferential statistics through case study methodology of an entire cohort of nine 

beginning undergraduate students in a teacher education course. Multiple-choice questions and open-ended 

questions were used to elicit their responses on sampling distribution, Central Limit Theorem, and concepts 

related to hypothesis testing. The students’ responses show their understanding of sampling distribution and 

Central Limit Theorem, but lack of understanding of concepts related to hypothesis testing. Their knowledge of 

hypothesis testing was characterized by their procedural approach to perform hypothesis testing. Some 

suggestions on teaching of statistics in the school mathematics curriculum are also provided. 
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INTRODUCTION 

In this paper, we report our study of mathematics pre-service teachers’ understanding (and 

misunderstanding) of statistics concepts, in particular, inferential statistics. Statistics education has 

become increasingly important because of its emphasis on decision-making in a world that is filled with 

much uncertainty and variation (Stapor, 2020). Statistics plays a crucial role in the development of 

thoughtful citizens who can take on cooperative, responsible, and steadfast roles supported by science 

and a shared perspective (Da Silva et al., 2021). It is thus not surprising that statistics education 

encompasses a wide range of disciplines and is recognized as a fundamental component of a well-

rounded education (Weiland et al., 2019).  The emphasis on the concept of teaching statistics began 

only relatively recently compared to other branches of mathematics; it started to become visible 

following the first International Conference on Teaching Statistics (ICOTS) held in 1982 (Batanero & 

Borovcnik, 2016). 

Over the past five decades of the late 20th century, the scope of statistics taught in the English-

speaking school curriculum has significantly expanded to a significant portion of the mathematics 

taught to all 5 to 16-year-old students as well as an essential component of other academic subjects 

(Holmes, 2003). However, the mathematics education paradigms gave little consideration to probability 

and statistics, although probability and statistics has been recognized as a critical part of mathematics 

education due to their utility values in 20th century (Vere-Jones, 1995). In the modern world, the 

demands of a data-centric society have emphasized the importance of statistics education (Engel, 2017). 

Efforts have been made to integrate statistics into the mathematics curriculum in various countries (e.g., 

Hijazi & Shaqlaih, 2023; Shi et al., 2009). 
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Inferential statistics has been included into the pre-university mathematics curriculum in 

Singapore for many decades. One of the main goals of pre-university mathematics in Singapore is to 

equip students with essential concepts and skills necessary for success in tertiary studies (Ministry of 

Education Singapore (MOE), 2020a). This study was conducted to explore the understanding (and 

misunderstanding) of key concepts of inferential statistics among beginning undergraduate students in 

Singapore, who have not yet been exposed to university-level statistics courses, as a gauge of their 

knowledge of pre-university statistics. 

 

Statistics Education in Singapore 

Singapore mathematics curriculum at primary and secondary levels incorporate only descriptive 

statistics (MOE, 2013; MOE, 2020b). At the pre-university level, mathematics curriculum includes both 

probability and inferential statistics, covering topics such as sampling distribution, Central Limit 

Theorem and hypothesis testing (MOE, 2020a). As primary and secondary students learn only 

descriptive statistics, they first encounter inferential statistics at the pre-university level. Note that 

students are not exposed to informal inference (such as intuitive ideas of sampling) in earlier school 

studies. They first engage directly with formal statistical inference during their pre-university education. 

Our collective knowledge of the Singapore mathematics classrooms in the Singapore 

mathematics classrooms shows that statistics is usually taught as the final chapter of the mathematics 

course. Thus, teachers have to rush through statistics topics in order to prepare their students for the 

national examinations, probably not paying much attention to the statistical concept development. 

Together with the use of graphing calculators, it is common knowledge that teachers focus on 

procedural computation rather than conceptual understanding. The relationship between procedural 

knowledge and conceptual knowledge is complex, procedural computation and application of formulae 

do not necessarily lead to conceptual understanding (Braithwaite & Sprague, 2021; Rumsey, 2002). The 

inclusion of calculators was meant to focus on higher order thinking skills (MOE, 2007). However, 

some researchers have asserted that excessive reliance on calculators could hinder students from 

comprehending fundamental concepts (Naseer, 2015; Khalid & Embong, 2019). 

 

Statistical Thinking 

Although Statistics began as part of mathematics, some researchers have argued that it is distinct 

from mathematics (e.g., Page & Moore, 1988). New perspectives on methods of instruction and the 

acquisition of statistics knowledge as distinct from mathematics are essential (Groth, 2015).  Many 

countries, such as China, Australia, the United States, New Zealand, and Israel, have undergone a 

paradigm shift from in school education, moving from traditional mathematics-centered approaches to 

a focus on understanding data and statistical thinking and literacy in teaching statistics (e.g., Hijazi & 

Shaqlaih, 2023; Pfannkuch & Ben‐Zvi, 2011; Zhang & Stephens, 2016). 
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Statistics involves interpreting data, which differs from mathematical thinking. Understanding 

the scope and limitations of data and knowing how to ask meaningful questions about data has become 

extremely important (Bargagliotti et al., 2020). The pivotal role of statistical thinking has received 

attention as part of statistics education, e.g., Guidelines for Assessment and Instruction in Statistics 

Education (GAISE) framework of the United States (Bargagliotti et al., 2020; Franklin et al., 2005). 

There are various interpretations of statistical thinking. Moore (1990) identified five core 

elements of statistical thinking: (1) The omnipresence of variation in process; (2) The need for data 

about processes; (3) The design of data production with variation in mind; (4) The quantification of 

variation; and (5) The explanation of variation. 

Snee (1990) defined statistical thinking, in the context of quality improvement, as ‘thought 

processes’ which acknowledge the omnipresence of variation in our daily lives and in all our actions. 

Statistical thinking focuses on the significance of identifying, describing, measuring, managing, and 

minimizing variation as means to enhance and create opportunities for improvement. Snee succinctly 

summarized his definition in a schematic manner (Figure 1). 

 

Figure 1. Statistical thinking in quality improvement (Snee, 1990, p. 118) 

Garfield et al. (2003) described three components of statistical thinking: (1) Understanding the 

underlying principles and methods of statistical investigations, recognizing the importance of variation 

and knowing how to analyze data using numerical summaries and visual displays; (2) Understanding 

the significance of sampling and making inferences from samples to populations, using models to 

simulate random events and estimate probabilities and knowing when and how to use inferential tools 

in the investigative process; and (3) Considering the context of a problem, conducting investigations, 

drawing conclusions based on the problem's specific circumstances, and acknowledging and 

comprehending the complete process. 

Chance (2002) believed that statistical thinking involves the following components: (1) the 

ability to view the entire process, including its iterative nature; (2) the ability to understand the 
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significance of variation within that process, and (3) the ability to explore data beyond standard methods 

and (4) generate new questions within specific contexts. These aspects make statistical thinking go 

beyond mere statistical literacy and reasoning.  

In examining the various descriptions of statistical thinking among the various researchers, some 

common ideas which form the essence of statistical thinking can be identified: (1) Recognizing the 

omnipresence of variation and understanding the inherent variability in individuals and measurements; 

and understanding variation in the design of data production; (2) Appreciating the importance of 

empirical evidence and data examination and prioritizing the collection, analysis, and interpretation of 

data to derive meaningful insights; (3) Quantifying variation through mathematical descriptions of 

random processes using probability; (4) Recognizing the data within the context of the problem to 

identify systematic effects behind random variability. 

One of the challenges in teaching statistics is that students often associate it with mathematics, 

expecting a focus on numbers, calculations, formulas, and finding a single correct answer (Ben-Zvi & 

Garfield, 2004; Dani & Quraan, 2023). Statistics encompasses working with complex data, exploring 

multiple interpretations based on diverse assumptions, and demanding proficient writing and 

communication abilities. Having a strong mathematics background does not guarantee proficiency in 

statistical thinking (Hannigan et al., 2013). Further, students proficient in computation might struggle 

to derive meaningful interpretations from experimental results (Delcham & Sezer, 2010), as 

mathematical and statistical thinking are not synonymous. Mathematical thinking prioritizes abstract 

patterns and structures, usually dismissing context as extraneous details (Cobb & Moore, 1997). In 

contrast, statistical thinking focuses on variability and the understanding that real-world data hold 

contextual significance. School mathematics could possibly lead students to adopt a deterministic 

perspective when approaching quantitative entities (Scheaffer, 2006). 

 

Descriptive and Inferential Statistics 

Descriptive statistics and inferential statistics represent two primary approaches in statistical 

analysis and interpretation of data (Mishra et al., 2019). As descriptive statistics enables researchers to 

make conclusions specifically about the data at hand, they do not extend to drawing conclusions about 

the population beyond the dataset (McTavish & Loether, 2018).  

The modern application of descriptive statistics is data analysis, which is supported by more 

complex and comprehensive descriptive tools (Cobb & Moore, 1997). Recognizing the significance of 

data analysis, Libman (2010) proposed that utilizing real-life scenarios as the foundation for descriptive 

statistics assignments can facilitate students’ comprehension of the purpose behind data analysis.  

Inferential statistics extends beyond the data to make inferences about a broader population, 

acknowledging the omnipresence of variation and the inherent uncertainty in drawing conclusions 

(Moore, 2007). Kern (2014) highlighted the divergence in goals between descriptive statistics and 



Peng, Toh, & Zhu, Mathematics Pre-Service Teachers’ Understanding …   441 

 

inferential statistics. Descriptive provides a quick overview to identify prominent patterns with minimal 

reliance on assumptions, while inferential statistics relies more heavily on the initial premises.  Learning 

descriptive statistics is an essential first step in conducting research and should always come before 

making inferential statistical comparisons. This is because descriptive statistics enable the organized 

summarization of data by describing the relationship between variables in a sample or population 

(Makar & Rubin, 2018). 

Researchers use inferential statistics to make predictions or inferences based on the data. By using 

inferential statistics, researchers can take data from samples and draw generalizations about a larger 

population (Baral, 2013). It is thus common for scholars to integrate both descriptive and inferential 

approaches in their study designs (e.g., McTavish & Loether, 2018). 

 

Students’ Difficulty and Misconceptions of Inferential Statistics 

Statistical inference has proved to be challenging for most students (Makar & Rubin, 2018; Park, 

2018). Students frequently struggle to comprehend the fundamental concepts or accurately interpret the 

outcomes of computation (Case & Jacobbe, 2018; Chance et al., 2004), for example, on sampling 

distribution.  

Sampling distribution serves as the key to unlocking comprehension of statistical inference 

(Aguinis & Branstetter, 2007; Garfield et al., 2008; Setyani & Kristanto, 2020). However, misuse and 

misunderstanding of sampling distribution are frequently observed in the field of statistics (Lewis, 

1999). Although students are typically introduced to probability distributions before sampling 

distributions, comprehending the idea of a distribution and making probabilistic interpretations have 

proved to be challenging during the learning process of inferential statistics (Kula & Koçer, 2020). 

Students could have difficulties in comprehending the concepts of sample and distinguishing 

between sample statistics and population parameters (Garfield et al., 2008; Kula & Koçer, 2020). Their 

understanding of the variability of a sample statistic is usually restricted to different values obtained 

from drawing different samples, showing a lack of recognition of variability extending to the concept 

of distribution (Saldanha & Thompson, 2002). Equating a sampling distribution with a distribution of a 

sample, and confusing it with the distribution of raw data from the population is also common (Lipson, 

2002; Yu & Behrens, 1994). Many students fail to comprehend the asymptotic behaviour of sampling 

distribution when repeated samples are drawn from a given population (Kula & Koçer, 2020). 

The Central Limit Theorem (CLT), which forms the foundation for pursuing further 

comprehension and application of inferential statistics (Yu & Behrens, 1995), is also difficult for most 

students (Kim, 2020). Students often lack a thorough understanding of the sample size and distribution 

of the population which determine the normality of a sampling distribution. (Chance et al., 2004; Yu & 

Behrens, 1995; Zhang et al., 2022).  
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The rationale of hypothesis testing is not intuitive to many students and thus presents a major 

barrier to understanding statistical inference (Cobb & Moore, 1997; Liu & Thompson, 2009). The 

misconceptions that hypotheses can be “logically proved” (Vallecillos & Holmes, 1994), and the 

rejection of null hypothesis implies the truth of alternative hypothesis (Travers et al., 2017) are also 

common. 

Significance level is often misinterpreted as the probability that the null hypothesis is true once 

the decision to reject it has been made (Batanero, 2000). Haller and Krauss (2002) showed two distinct 

types of misunderstandings regarding the significance level: (1) erroneous interpretation as random-

percentage, such as for 5% significance level meaning that “it means, that the measure lies 5% above 

the random-percentage” (p. 2); (2) significance test enables an evaluation of the probabilities of 

hypotheses. Other difficulties related to significance level include the relation of sampling distribution 

to the level of significance, and the critical region (Vallecillos, 1999).  

The p-value is commonly misinterpreted as the probability of the null hypothesis being true or 

false (McShane et al., 2019; Smith, 2018; Wright, 2002). Such a misinterpretation disregards the 

conditional probabilistic nature of the p-value (Gagnier & Morgenstern, 2017). Studies have also shown 

the misconception that the p-value represents the probability that the null hypothesis is true, given 

certain data (Badenes-Ribera et al. 2016; Krzywinski & Altman, 2013; McShane et al., 2019; Smith, 

2018; Verdam et al. 2013), or the chance of getting the outcomes they observed from an experiment 

(Travers et al., 2017).   

Students must comprehend and establish connections among numerous abstract concepts, such 

as the sampling distribution, significance level, null and alternative hypotheses, the test statistic and the 

p-value (Liu & Thompson, 2009; Sotos et al., 2007). These concepts are mutually connected, further 

making hypothesis testing difficult to comprehend (Emmert-Streib & Dehmer, 2019).  

 

Objective and Research Question that Guides This Study 

In this study, we aim to explore the understanding of inferential statistics among beginning 

undergraduate students in Singapore, in order to provide insight for educators to examine their 

instruction in pre-university statistics. Formal inferential statistics occupies a significant portion of the 

Singapore pre-university mathematics syllabus, even though informal inference (such as intuitive ideas 

of sampling) is not introduced at the secondary or primary levels. Notably, the CLT is included in 

Singapore’s pre-university mathematics curriculum, while it is typically introduced at the university 

level in most other countries due to its abstract nature. These factors highlight the importance of 

assessing students’ understanding of the concepts they learned in pre-university. We believe that the 

study we present here is timely as statistics is gaining wider recognition, and currently there is a scarcity 

of studies examining Singapore students’ understanding of concepts of inferential statistics. Despite 

statistics receiving much attention in Singapore, studies in Singapore on statistics education are rare. A 
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search on Google Scholar and the ERIC database did not reveal any research conducted in Singapore 

on this specific topic. The research question (RQ) guiding this study is: “What are the common 

misconceptions held by beginning undergraduate students, who enrolled in mathematics courses in pre-

university institutions in Singapore, regarding the concepts of sampling distribution and hypothesis 

testing in inferential statistics?” 

 

Existing Tools to Measure Students’ Understanding of Statistics 

Researchers have developed various tools for assessing students’ understanding of statistics. 

Cohen and Chechile (1997) introduced an interactive program to exclusively test conceptual 

understanding of probability distribution. Questions to evaluate students' comprehension via graphical 

representations were used. They emphasized the importance of open-ended questions in identifying 

unanticipated misconceptions, which provide clues to conceptual confusions. 

Garfield (1998) created an instrument to assess students' statistical reasoning skills and 

understanding of probability and statistics concepts. Multiple-choice questions featuring statistics and 

probability problems were used. Students were required to select the response that best matches their 

own thinking and reasoning. The selection provides insights into students' thought processes and 

captures their reasoning behind their choices. 

According to Turegun and Reeder (2011), multiple-choice items might restrict students' 

individual thinking processes and risk students reverse-engineering correct answers. Aiming for an in-

depth examination of conceptual understanding, they used an open-ended questionnaire format which 

requires students to justify their answers.  

The Assessment Resource Tools for Improving Statistical Thinking (ARTIST) project was 

developed to assist statistics teachers in creating and utilizing better assessments (Garfield & delMas, 

2010). It offers an extensive online item database with over a thousand assessment items in three formats 

(open-ended, multiple-choice, performance tasks). These items provide resources to evaluate students' 

statistical literacy, reasoning, and thinking. 

 

METHODS  

This research is a case study of the misconceptions related to inferential statistics among 

mathematics pre-service teachers in Singapore. Even though this study involved only nine student 

teachers (this group of nine students was an entire cohort of the teacher education course from the 

degree program), we focused on deeper insights into the categories of students’ misconceptions. Our 

study will serve as a foundation for more extensive future research, providing a focused perspective on 

the complexities of students’ understanding of inferential statistics. 
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Case study enables researchers to explore a phenomenon through a diverse array of perspectives 

and offers the flexibility to deeply investigate intricate experiences and situations that may lack a 

definite or singular conclusion (Lucas et al., 2018). Through case study, the researcher offers a 

substantial depiction of the research context, thus enabling a comprehensive understanding of the core 

subject through detailed observation and examination (Creswell, 2015). Case study methodology is 

useful for investigating a contemporary phenomenon in which researchers have limited control over 

behavioural events (Yin, 2018). 

 

Developing the Instrument 

Examining the assessment tools described in the previous section, none of them fully met our 

research objective. Hence, we constructed our own instrument. We used a combination of both multiple-

choice questions (three items) and open-ended questions (four items) in this study, modelled after the 

structures of the assessment tools described above. 

We designed three multiple-choice questions to assess students' understanding of sampling 

distributions, the CLT, and the p-value. Four open-ended questions were designed to examine their 

understanding of the null and alternative hypothesis, significance level, test statistics, and critical 

regions. The selection of this mixed format stemmed from our consideration of the affordances of these 

two formats and the assessment tools we reviewed above.  

For concepts such as sample distribution, CLT, and p-value, we identified various 

misconceptions reported in existing research studies from other educational systems and settings. Based 

on these findings, we aimed to examine whether Singaporean students in our study exhibited similar 

misconceptions. To assess this, we incorporated these misconceptions as distractors in multiple-choice 

questions. Multiple-choice questions are effective for assessing comprehension (Xu et al., 2016), 

allowing assessors to target specific aspects (Scharf & Baldwin, 2007). Our literature review confirmed 

that diverse misconceptions related to these concepts have been observed across different educational 

contexts (e.g., Haller & Krauss 2002; Kim, 2020; Kula & Koçer, 2020; Lewis, 1999; McShane et al., 

2019; Vallecillos,1999).  

Open-ended questions were used to obtain a more comprehensive assessment of students’ 

comprehension of the null and alternative hypothesis, significance level, test statistics and critical 

regions. Since few misconceptions related to these concepts have been identified in other educational 

systems and settings, there was limited scope for creating effective multiple-choice questions. Thus, the 

use of open-ended questions can provide the advantage of uncovering unanticipated misconceptions 

(Turegun & Reeder, 2011). 

Inferential reasoning is based on the idea that a sample, though only a part of the population, can 

still provide meaningful insights about the entire population. The process typically begins by forming 

a hypothesis about the situation, starting with a null hypothesis which is under the assumption that 
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chance is the only explanation (Batanero & Borovcnik, 2016). The null hypothesis states that the 

observed results are not significantly different from what would be expected by random variation 

(Batanero & Borovcnik, 2016; Moore et al., 2008). In contrast, the alternative hypothesis is a statement 

that contradicts the null hypothesis, suggesting that there is a real effect or difference (Moore et al., 

2008). The observed data is just one of all possible samples that could be drawn from the population. 

The distribution of sample statistics (e.g. the sample mean in this study) across all possible samples of 

a specified size reflects the variability and is referred as the sampling distribution (Batanero & 

Borovcnik, 2016). According to the Central Limit Theorem, regardless of the population’s original 

distribution, as long as the population has a finite standard deviation, the sampling distribution of the 

sample mean will approximate a Normal distribution when the sample size is sufficiently large (Moore 

et al., 2008; Sotos et al., 2007). 

To draw conclusions, we assess how unusual the observed data is, or how extreme it is, assuming 

the null hypothesis is true. The p-value is the probability of obtaining the observed value (i.e. the test 

statistic in this study) or a more extreme value, under the null hypothesis (Batanero & Borovcnik, 2016; 

Moore et al., 2008). A smaller p-value indicates stronger evidence against the null hypothesis The 

significance level serves as a threshold to determine whether the data are consistent with the null 

hypothesis. If the p-value is equal to or smaller than the significance level, the data are deemed 

statistically significant, leading to a rejection of the null hypothesis (Batanero & Borovcnik, 2016; 

Moore et al., 2008). If a value of significance level is chosen, the critical value is a threshold or cutoff 

point that separates the region under the Normal distribution curve where the null hypothesis is rejected 

from the region where it is not rejected (Moore et al., 2008). The critical region is the range of values 

where the null hypothesis is rejected. The instrument and rationale of the items are given below: 

 

Question 1 

Multiple-choice question on sampling distribution: Which of the following describes a sampling 

distribution of sample mean? This question focuses exclusively on the sampling distribution of the 

sample mean because, in Singapore’s pre-university mathematics curriculum, students are only 

introduced to the concept of sampling distribution through the sample mean. The same rationale applies 

to Question 2 below. 

1. Option (a): The distribution of individual data points in a sample. 

This option inaccurately equates the sampling distribution with the distribution of raw data from 

the population. The objective of this option is to identify students’ confusion between sampling 

distribution and the distribution of raw data (Lipson, 2002; Yu & Behrens, 1994). 

2. Option (b): The distribution of sample mean calculated from all possible samples. 

This option is the correct answer (Batanero & Borovcnik, 2016; Garfield et al., 2008). 
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3. Option (c): The distribution of population mean. 

This option serves to identify students’ confusion between the sample statistic and population 

parameter (Garfield et al., 2008; Kula & Koçer, 2020). Sample statistics are random variables 

with a probability distribution, while population parameters are constants. 

4. Option (d): The distribution of a single sample. 

This option identifies students’ inability to distinguish between sample distributions and 

sampling distributions (Lipson, 2002; Yu & Behrens, 1994). Sampling distributions, which 

indicate the distribution of a sample statistic (such as sample mean, sample proportion, etc.) 

calculated from all possible samples of identical size (Garfield et al., 2008; Lipson 2003), are 

distinct from sample distributions, which represent the distribution of a sample (Garfield et al., 

2008; Lipson, 2002; Yu & Behrens, 1994). 

5. Option (e): None of the above. (Please state your reasons below.) 

This option was introduced to assist us in identifying potential misconceptions which had not 

been anticipated by us. This option was introduced for the other multiple-choice questions with 

the same objective. 

 

Question 2 

Multiple-choice question on CLT: The Central Limit Theorem states that: 

1. Option (a): The sample is approximately normally distributed if the sample size is large. 

This option inaccurately confuses the sampling distribution with the sample distribution 

(Lipson, 2002; Yu & Behrens, 1994), allowing us to identify the misconceptions discussed in 

option (d) of Q1 in the context of the CLT. In addition, this option enables us to assess whether 

students had an accurate understanding of the CLT, which exclusively guarantees the normality 

of sample statistics. 

2. Option (b): The sample mean is approximately normally distributed in samples of any size. 

The CLT does not guarantee that the sample mean will be normally distributed in any sample 

size. This option aims to discern whether students lack the understanding of the sample size 

that determines the normality of a sampling distribution (Chance et al., 2004; Zhang et al., 

2022). 

3. Option (c): The sample mean is approximately normally distributed if the sample size is large 

enough. 

This option is the correct answer Sotos et al., 2007). 

4. Option (d): The sample mean is approximately normally distributed in samples of any size if 

the population follows a normal distribution. 

This statement is true but not because of CLT, which does not require the population to follow 

a normal distribution for the sample mean to be approximately normally distributed. However, 
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students often lack a thorough understanding of how the distribution of the original population 

influences the normality of a sampling distribution (Chance et al., 2004; Yu & Behrens, 1995; 

Zhang et al., 2022). Thus, this option serves to examine this potential misconception. 

5. Option (e): None of the above. (Please state your reasons below.) 

 

Question 3 

Multiple-choice question on p-value: What is the p-value in hypothesis testing? 

1. Option (a): The p-value is the probability that the null hypothesis is true. 

This option identifies a prevalent misconception among students who erroneously associate the 

p-value with the probability that the null hypothesis is true (Badenes-Ribera et al., 2016; 

Krzywinski & Altman, 2013; McShane et al., 2019; Smith, 2018; Verdam et al., 2013). 

2. Option (b): The p-value indicates the probability of obtaining the observed test statistic, 

assuming the null hypothesis is true. 

This option is the correct answer (Batanero & Borovcnik, 2016). 

3. Option (c): The p-value quantifies the probability of getting the outcomes observed from an 

experiment. 

This option reflects a misconception among students who mistakenly perceive that the p-value 

is the probability of getting the outcomes observed from an experiment (Travers et al., 2017). 

4. Option (d): The p-value represents the probability of mistakenly rejecting the null hypothesis 

when the null hypothesis is true. 

This option reflects a misconception among students who wrongly perceive the p-value as 

representing the probability of committing an error while rejecting the null hypothesis when 

the null hypothesis is true (i.e., type I error) (Sotos et al., 2009). 

5. None of the above. (Please state your answer below.) 

 

Question 4 

Open-ended question on null and alternative hypothesis: How do you formulate the null 

hypothesis and alternative hypothesis? Many studies have shown that students frequently have 

difficulty transforming contextual information from word problems (e.g., Holling et al., 2008; Pape, 

2004). This question is designed to assess students’ understanding of the process of formulating 

hypotheses. By asking students to explain how they construct both the null and alternative hypotheses, 

we seek to understand how students formulate the hypotheses so that unveil possible misconceptions. 
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Question 5 

Open-ended question on significance level: Explain what you understand by significance level. 

The significance level is typically provided in practice and examination questions on hypothesis testing. 

Students might use it to make decisions without fully grasping its concept. For instance, some students 

in the study conducted by Haller and Krauss (2002) interpreted the significance level as “the measure 

lies 5% above the random-percentage” (p. 2), exemplifying instances where certain students gave 

meaningless explanations of significance level. This question aims to gauge students’ comprehension 

of the significance level. It prompts them to articulate the significance level, the response to which will 

elucidate the extent of students’ comprehension regarding the meaning and function of the significance 

level. 

 

Question 6 

Open-ended question on test statistic: How are test statistics used to assess the evidence against 

the null hypothesis? Explain. Common classroom experience shows that students frequently resort to 

calculators for the computation of test statistics. The built-in statistical programs on graphing calculators 

automatically furnish both test statistics and p-values without the need for explicit calculation 

procedures. The passive engagement with dialogue boxes in statistical software programs may lead to 

weak comprehension of connections between test statistics and p-values. This question prompts 

students to explain how the test statistics are utilized to evaluate the evidence against the null hypothesis. 

By requiring a detailed explanation, it enables a comprehensive assessment of students' grasp of the 

significance and application of test statistics. 

 

Question 7 

Open-ended question on critical region, significance level and decision-making: (a) How does 

the critical region relate to the significance level? (b) Hence, how is it used in the decision-making 

process in hypothesis testing? In contrast to the automated reporting of test statistics and p-values by 

built-in statistical programs on graphing calculators, deriving corresponding critical values using 

graphing calculators requires employing the embedded statistical distribution, demanding a robust grasp 

of statistical and probabilistic principles. Thus, it is not surprising that passive learning was noted by 

anecdotal class evidence that students tend to avoid involvement with critical regions in hypothesis 

testing. This avoidance likely reduces their exposure to this concept and may result in a limited 

understanding of how this process relates to the concept of ‘significance’ and the underlying rationale 

guiding decision-making. 

Part (a) of Question 7 aims to explore students’ understanding of the interrelationship between 

critical regions and the significance level. Part (b) serves to explore their understanding of the role of 

critical regions in the decision-making process in hypothesis testing. 
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The Participants 

The participants of this study were an entire cohort of nine mathematics pre-service teachers from 

the Singapore National Institute of Education from the first-year degree program in the university. They 

had completed their pre-university education, hence were familiar with the pre-university inferential 

statistics of the mathematics curriculum.  

This cohort of pre-service teachers, also the first-year undergraduate mathematics students, had 

not yet pursued further statistics-related courses in the university. Their exposure to inferential statistics 

remained limited to their prior experiences in pre-university, rendering them suitable candidates for this 

study. Particularly, the majority were enrolled in different pre-university institutes in Singapore. This 

study was approved by the University’s Ethics Review Committee. The invited pre-service teachers 

agreed to participate. They were provided with a hard copy of the questionnaire consisting of the seven 

questions described above. The survey, with 30 minutes duration, was conducted under usual closed-

book conditions.  

 

RESULTS AND DISCUSSION  

Multiple-Choice Items 

As shown from the students’ responses to the multiple-choice items (Q1, Q2 and Q3), most 

students could answer the items on sampling distribution and the CLT correctly, while more than half 

the students showed a range of misconceptions of the p-value. This aligns with the findings from several 

other studies, which unveiled a greater diversity of misconceptions of the p-value, compared to 

misconceptions regarding the sampling distribution and the CLT (e.g., Gagnier & Morgenstern, 2017; 

McShane et al., 2019; Smith, 2018; Sotos et al., 2009; Wright, 2002). The students’ responses to the 

three items are shown in Table 1. The correct answer for each question is highlighted in bold. 

Table 1. The participants responses to the multiple-choice questions 

Question Option 

The number of 

students who 

chose this option 

Q1: Which of the 

following 

describes a 

sampling 

distribution of 

sample mean? 

(a) The distribution of individual data points in a sample. 2 

(b) The distribution of sample mean calculated from 

all possible samples. 

6 

(c) The distribution of population mean. 1 

(d) The distribution of a single sample. 0 

(e) None of the above. (Please state your reasons below.) 0 

Q2: The Central 

Limit Theorem 

states that 

(a) The sample is approximately normally distributed if 

the sample size is large. 

2 

(b) The sample mean is approximately normally 

distributed in samples of any size. 

0 
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Question Option 

The number of 

students who 

chose this option 

(c) The sample mean is approximately normally 

distributed if the sample size is large enough. 

7 

(d) The sample mean is approximately normally 

distributed in samples of any size if the population 

follows a normal distribution. 

0 

(e) None of the above. (Please state your reasons below.) 0 

Q3: What is the 

p-value in 

hypothesis testing  

(a) The p-value is the probability that the null hypothesis 

is true. 

2 

(b) The p-value indicates the probability of obtaining 

the observed test statistic, assuming the null 

hypothesis is true. 

4 

(c) The p-value quantifies the probability of getting the 

outcomes observed from an experiment. 

0 

(d) The p-value represents the probability of mistakenly 

rejecting the null hypothesis when the null hypothesis 

is true. 

3 

(e) None of the above. (Please state your answer below.) 0 

 

In response to Question 1 (Q1), six students chose the correct option (b). Two students selected 

option (a), reflecting the misconception that sampling distribution refers to the distribution of raw data 

(Lipson, 2002; Yu & Behrens, 1994). One student chose option (c), showing the misunderstanding of a 

sampling distribution of sample mean as a sampling distribution of population mean (Garfield et al., 

2008; Kula & Koçer, 2020).  None of the students chose option (d), i.e., none equated the sampling 

distribution with the sample distribution (i.e., the distribution of a single sample) (Lipson, 2002; Yu & 

Behrens, 1994). 

In Q2, seven students chose option (c), correctly identified that the CLT guarantees the sample 

mean with an approximate normal distribution provided the sample size is sufficiently large. Two 

students chose option (a), demonstrating a confusion of the sampling distribution with the sample 

distribution (Lipson, 2002; Yu & Behrens, 1994) within the context of the CLT. They recognized the 

necessity of a large sample size for the CLT to hold but might not have known the normality refers to 

the sample statistics rather than the sample itself. Upon a closer examination, student 2 was likely 

confused between sample statistics and population parameters in the response to Q1 by choosing option 

(c). Student 7 showed a misconception of the sampling distribution by perceiving it as the distribution 

of raw data in Q1 by incorrectly choosing option (a). These two students who consistently made the 

same mistakes in Q1 and Q2 showed their lack of understanding of sampling distribution and the CLT. 

The remaining students demonstrated a comparatively stronger comprehension of sampling distribution 

and the CLT.  
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None of the students chose option (b) in Q2, showing a lack of evidence of the misconception of 

the sample size requirement which is outlined by the CLT to guarantee the normality of the distribution 

of a sample mean (Chance et al., 2004; Zhang et al., 2022). No students selected option (d), showing 

no evidence of a confusion in understanding the influences of the distribution of the original population 

on the normality of a sampling distribution (Chance et al., 2004; Yu & Behrens, 1995; Zhang et al., 

2022). 

For Q3, four students chose the correct option (b). Two students (3 and 5) chose option (a), 

reflecting a misunderstanding of the p-value as the probability that the null hypothesis is true (Badenes-

Ribera et al., 2016; Krzywinski & Altman, 2013; McShane et al., 2019; Smith, 2018; Verdam et al., 

2013). Three students (1, 7 and 8) chose option (d), reflecting the misinterpretation of the p-value as 

probability of committing type I error (Sotos et al., 2009), that is, the probability of mistakenly rejecting 

the null hypothesis when the null hypothesis is true. None chose option (c), showing there was no 

evidence of the misconception that the p-values to the probability of getting the outcomes observed 

from an experiment (Travers et al., 2017) in this group of students. 

 

Open-Ended Items 

The students’ responses to the four open-ended questions (Q4 to Q7) exhibited their weak 

understanding of the concepts related to hypothesis testing compared to sampling distribution and CLT 

from the multiple-choice questions. Examining the students’ responses to Q4, we grouped students’ 

understanding into four categories: (h1) The null hypothesis (or alternative hypothesis) is the statement 

that needs to be proved as true (or false, respectively). (h2) The alternative hypothesis (or null 

hypothesis) is the statement that needs to be proved as true (or false, respectively). (h3) The null 

hypothesis and alternative hypothesis represent two “opposite” statements. (h4) Decision-making with 

p-values and critical regions could be made without reference to the null or alternative hypotheses.  

Categories (h1) and (h2) reveal the misconceptions that either the null or alternative hypothesis 

needs to be proved to be true. As described by Moore (1990): “Statistical significance is a way of 

answering the question ‘Is the observed effect larger than can reasonably be attributed to chance 

alone?’” (p. 132). Hypothesis testing is about deciding which hypothesis is to be preferred from the 

information of the data, with the hope of controlling the probability of making type I error (Christensen, 

2005; Hacking, 2016; Lenhard, 2006).  

Category (h3) reflects the view that the alternative hypothesis is ‘opposite’ to the null hypothesis.  

Note that in one-tailed parametric hypothesis tests, the two hypotheses are not ‘opposite’ to each other 

(H_0: μ=μ_0 vs H_1: μ<μ_0 or H_0: μ=μ_0 vs H_1: μ>μ_0). Categories (h1), (h2) and (h3) share a 

common misconception that the purpose of hypothesis testing is either to prove the null (or alternative) 

hypothesis.  Category (h4) is a procedural description of hypothesis testing by connecting the 

hypotheses, p-values and critical regions without providing conceptual understanding. 
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From the students’ responses to Q5, their understanding of significance level was categorized 

into four categories: (s1) It is the probability that hypotheses (either null or alternative) are true or not 

true. (s2) It is employed in the decision of rejecting the null hypothesis. (s3) It is used to determine the 

critical region or critical value. (s4) It shows how significant the sample mean is to represent the 

population mean, only student 3 exhibited this comprehension.  

Category (s1) demonstrated a misconception of the significance level being the probability of 

hypotheses being true or false. Category (s2) identified the significance level serving as a decision 

criterion. Students in category (s3) recognized that the role of significance level in finding the critical 

region or critical value is essential in making decisions. The student with the comprehension in category 

(s4) had likely not understood the role of significance level in hypothesis testing.  

For Q6, only two students demonstrated an understanding of the role of test statistics in the 

decision-making of hypothesis testing. Their responses exhibited an understanding of the assessment 

aimed at verifying if observed value of test statistics lie within the critical region. Other students’ 

responses exhibited misconception of test statistics. These misconceptions of test statistics were 

classified into three categories: (t1) incorrect responses due to the inability to recognize the connection 

between test statistics and p-value and critical region. It includes such responses as ‘test statistics is 

calculated using probability and sample mean of the sample’; (t2) inability to identify the utilization of 

test statistics in the decision-making process with a critical region; and (t3) incorrect response alluding 

to test statistics serve to prove the truth of the null (or alternative) hypothesis. Category (t3) is similar 

to (h1) and (h2) of Q4, which is the misunderstanding that the purpose of hypothesis testing is to prove 

or disprove the null or alternative hypothesis. Students 7 and 9 in category (t3) did not explicitly connect 

the concept of test statistics with p-values, p-value was mentioned in their responses. Student 2 in 

category (t2), who mentioned the concept of critical region, did not indicate explicitly the relation 

between test statistics and these two concepts.  

For Q7, only student 1 exhibited a grasp of both aspects regarding critical regions: the relationship 

between critical regions and significance level, i.e., critical regions are determined by significance level, 

as discussed in part (a), and the utilization of critical regions in the decision-making process, i.e., 

assessing if observed test statistics falls within critical regions, as assessed in part (b). The responses 

from students 2 to 9 exhibited misconceptions regarding the critical region were categorized into four 

categories: (c1) Critical regions are ranges in which the null hypothesis is true or false. (c2) Critical 

regions are intervals where most of the data will fall. (c3) The use of critical regions in the decision-

making process involves assessing if p-values fall within critical regions. (c4) The utilization of critical 

regions in the decision-making process involves comparing the value of critical region with significance 

level. Student 6 held this misconception.  

Similar to the misconception identified in Q4, where students mistakenly believed that the null 

hypothesis or the alternative hypothesis can be proved or disproved, category (c1) of Q7 reflects a 

misunderstanding of the critical regions as ranges for proving or disproving the null hypothesis. 
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Category (c2) reflects a misunderstanding between the distinction between the concept of data and 

random variables. Critical regions do not provide ranges for data but produce intervals for random 

variables. Students in categories (c3) and (c4) used p-values instead of critical regions. 

The correctness of students’ responses to the questions is summarized in Table 2. A checkmark 

symbol (✓) in the cell indicates that the student had demonstrated an understanding of the concepts 

assessed in the question. A cross-mark symbol (✗) in the cell represents that the student did not exhibit 

an understanding of the concepts assessed by the question. 

Table 2. Tabulation of the correct responses of the participants 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 (a) Q7 (b) 

The 

concept 

assessed 

Sampling 

distribution 

The 

central 

limit 

theorem 

p-

value 

Null and 

alternative 

hypothesis 

Significance 

level 

Test 

statistics 

How is the 

critical 

region 

related to 

the 

significance 

level 

The 

critical 

region in 

decision-

making 

process 

S1 ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ 

S2 ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ 

S3 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ 

S4 ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 

S5 ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 

S6 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 

S7 ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ 

S8 ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ 

S9 ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ 

 

In considering the multiple-choice questions Q1 to Q3, only three students (4, 6, and 9) identified 

the correct description of sampling distribution, CLT and p-value. Another three students (3, 5, and 8) 

exhibited an understanding of sampling distribution and CLT in the multiple-choice questions. Two 

students (1 and 2) demonstrated understanding in only one question. One student (7) failed to correctly 

identify any of the concepts of the three questions. Most students gave the correct responses to the items 

on CLT (seven out of nine) and sampling distribution (six out of nine). Only four students gave the 

correct response to item 3 on p-value. 

Upon closer scrutiny, the students’ answers to the questions also exhibited misconceptions of 

concepts not directly addressed by the questions. We extracted the various misconceptions related to 

hypothesis testing and sampling distribution, and tabulated the number of students with these 

misconceptions (Table 3). 
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Table 3. Tabulation of the misconceptions of inferential statistics among the participants. 

Misconception 
Number of 

students 

The sampling distribution is the distribution of raw data. 2 

Recognizing the sampling distribution of the sample mean as the sampling 

distribution of the population mean. 

1 

The Central Limit Theorem guarantees the normality of sample distribution 

when the sample size is large enough. 

2 

The p-value is the probability that the null hypothesis is true. 2 

The p-value is the probability of mistakenly rejecting the null hypothesis when 

the null hypothesis is true. 

3 

The null and (or) alternative hypothesis can be proved or disproved. 9 

The significance level is the probability that hypotheses (either null or 

alternative) are true or not true. 

3 

Test statistics can be calculated by using probability. 1 

Test statistics serve to prove the truth of the null or alternative hypothesis. 3 

Critical regions are ranges in which the null hypothesis is true or false. 3 

Critical regions are intervals where most of the data will fall. 1 

The use of critical regions in the decision-making process involves assessing 

if p-values fall within critical regions. 

3 

The utilization of critical regions in the decision-making process involves 

comparing the value of critical region with significance level. 

1 

 

The most significant misconception among all the students was that the objective of hypothesis testing 

is to prove or disprove the null or alternative hypothesis. 

 

Discussion 

The students in this study exhibited misconceptions that are similar to those identified in other 

educational contexts related to sampling distribution, the CLT, and p-value (e.g., Garfield et al., 2008; 

Lipson, 2002; Sotos et al., 2009; Yu & Behrens, 1994; Zhang et al., 2022). They seem to have a better 

understanding of sampling distribution and CLT compared to concepts involved in hypothesis testing. 

We further revealed unanticipated misconceptions regarding the null and alternative hypothesis, 

significance level, test statistic, and critical region. These misconceptions offer insights into the 

challenges faced when learning about inferential statistics in pre-university mathematics in Singapore. 

The misconception of the null or alternative hypothesis as being provable could be an indicator 

of a lack of statistical thinking due to their long-held grounding in mathematical thinking. 

Understanding the omnipresent nature of variation within data is a core element of statistical thinking 

(Engel & Sedlmeier, 2005; Moore, 1990; Snee, 1990; Wild & Pfannkuch, 1999). Students who 

mistakenly claim that a hypothesis can be proved as true or false exhibited a deficiency in understanding 

the variation in empirical data.  
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Deterministic thinking, which mathematics is usually associated with, does not attempt to align 

the variability in data with a probability model (Pfannkuch & Wild, 2004). Determinism adopts a view 

of truth and knowledge that is absolute, suggesting that an outcome can be predicted or determined 

(Serradó et al., 2005). Students are often exposed to questions that require them to prove or disprove 

mathematical statements or expressions in learning mathematics. Mathematical computations 

commonly involve deterministic algorithms. Hence, the result is invariably either true or false. In 

mathematics education, students are frequently guided towards making deterministic generalizations 

that apply to a variety of problems (Groth, 2013), quite contrary to statistical thinking. 

In many countries, elements of inferential statistics have been introduced into the secondary 

school mathematics syllabus, e.g., the International General Certificate of Secondary Education 

(IGCSE) mathematics syllabuses (Toh, 2023a; 2023b; 2023c). Pfannkuch and Wild (2015) 

recommended introducing inferential statistics gradually throughout the curriculum, rather than 

presenting them as a complex network of integrated ideas in the final years of schooling. Some form of 

inferential statistics, such as the notion of sampling, can be taught to students as early as the lower 

secondary levels (e.g., Toh et al., 2018; 2021). 

 

CONCLUSION  

This is the first study on the understanding of inferential statistics among mathematics pre-service 

teachers in Singapore. The findings of this study could serve as a foundation for further study on 

students’ and teachers’ knowledge of statistics. In particular, we have demonstrated that Singapore pre-

service teachers share many misconceptions in inferential statistics as reported in many studies abroad.  

Statistics is commonly integrated into the mathematics curriculum before tertiary studies in most 

of the education systems worldwide, including Singapore. The Singapore mathematics curriculum 

document does not make explicit reference to statistical thinking, statistical literacy or statistical 

reasoning, or the need for data or dealing with variation. It appears that the syllabus explicitly describes 

the deterministic computations associated with statistics. The lack of description of statistical thinking 

in the syllabus might likely have led teachers to overlook the significance of statistical thinking or 

conceptual understanding in statistics. This study also shows that the teachers had the tendency to 

describe statistical concepts using procedural steps without much conceptual understanding.    Given 

the intricate and strongly interconnected nature of the fundamental concepts in inferential statistics, 

learners with weak understanding of concepts may find it challenging to grasp the logic of inferential 

statistics. We recommend that teachers dedicate sufficient attention to developing their learners’ 

conceptual understanding when teaching inferential statistics. Conceptual understanding of statistics 

can best be developed through discussing the “commonsense” of the statistical procedures through 

engaging the learners in the real-world context of carrying out the statistical procedures. 
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This study also showed that the pre-service teachers overlooked the assumptions in performing 

hypothesis testing. We argue for the importance of checking the assumptions before hypothesis testing 

during instruction, as it serves to ensure the validity of performing hypothesis testing. This enables 

learners to see the process of hypothesis testing as a whole, with interconnecting key components such 

as null hypothesis, alternative hypothesis, test statistics, and p-value. 

Students may better understand formal methods of statistical inference if they develop informal 

ideas of inference early in their studies. Delayed exposure to inferential statistics might be a potential 

factor contributing to students’ struggle in grasping inference-related concepts. The exploratory study 

presented here aims to support a more inclusive society developing statistical literacy, hence integrating 

learners into the world involving data through improving statistics instruction. 

 

Limitation of the Study 

The limited availability of literature on misconceptions related to hypothesis testing led to the 

inclusion of different assessment formats (multiple-choice and open-ended questions) for different 

concepts, introducing a potential limitation to this study. While open-ended items allow participants to 

express their understanding, the written format may pose challenges on the level of detail provided.  

Despite sharing a common pre-university curriculum, teacher quality, teaching approaches and 

institutional resources vary among different institution. These differences may impact students’ 

understanding of inferential statistics, as well as their learning approaches. Taking an alternative 

perspective, these students were spread from different pre-university institutions, suggesting a ‘balance’ 

out the variation across these institutions. The students in this study represent the top performers in their 

pre-university cohort.  Thus, their misconceptions are likely to be also prevalent among the general 

student population. 
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